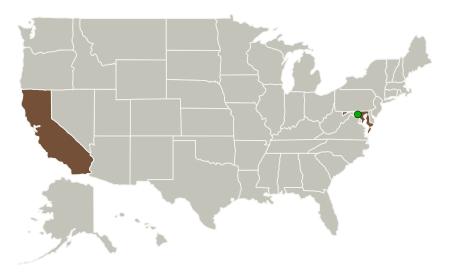
Compact Ultrasensitive Erbium-doped Waveguide Optical Gyros, Phase I



Completed Technology Project (2015 - 2015)

Project Introduction

In this program, we propose to develop a new photonic-integration platform that incorporates optical gain in resonant waveguide optical gyroscopes. This new photonic integration platform is based on our existing low-loss SiN/SiO2 PLC photonic integration technology and incorporates a doped Aluminum Oxide layer for gain. One key resonant waveguide optical gyro design constraint is the relationship between the waveguide length, which can increase the Sagnac effect, and waveguide loss, which decreases the gyro resolution. Freedom Photonics' low loss SiN PLC platform is clearly an adequate path forward for record-breaking Gyro performance. With introduction of gain into the PLC, new possibilities arise for enhanced sensitivity, simplified control electronics, and ultra compact and robust designs.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Freedom Photonics, LLC	Lead Organization	Industry	Santa Barbara, California
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Compact Ultrasensitive Erbiumdoped Waveguide Optical Gyros, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1	
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas		
Target Destinations		

Small Business Innovation Research/Small Business Tech Transfer

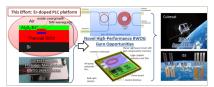
Compact Ultrasensitive Erbium-doped Waveguide Optical Gyros, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations		
California	Maryland	

Project Transitions

June 2015: Project Start


December 2015: Closed out

Closeout Summary: Compact Ultrasensitive Erbium-doped Waveguide Optical Gyros, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138888)

Images

Briefing Chart Image

Compact Ultrasensitive Erbiumdoped Waveguide Optical Gyros, Phase I (https://techport.nasa.gov/imag e/131810)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Freedom Photonics, LLC

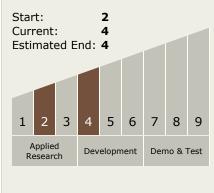
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Gordon Morrison

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Compact Ultrasensitive Erbium-doped Waveguide Optical Gyros, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.2 Navigation
 Technologies
 - ☐ TX17.2.3 Navigation Sensors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

